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Executive Summary 

 This report summarizes basic results of an intercomparison of the capability of  a large 
number of clear-air turbulence (CAT) forecasting algorithms to predict the locations of CAT. 
The 14 algorithms considered in the study include a number of algorithms that have been 
available for many years, as well as algorithms that are newly under development. The algorithm 
forecasts are based on output of the RUC-2 numerical weather prediction model for the period 21 
December 1998 to 31 March 1999. Forecasts issued at 1200, 1500, and 1800 UTC, with 3-, 6-, 
and 9-hr lead times were included in the study. Turbulence AIRMETs, the operational turbulence 
forecast product that is issued by the NWS’s Aviation Weather Center (AWC), also were 
included in the evaluation. 

 The forecasts were verified using Yes and No turbulence observations from pilot reports 
(PIREPs), as well as No observations based on automated vertical accelerometer (AVAR) data 
that were obtained from a number of aircraft. The algorithms were evaluated as Yes/No 
turbulence forecasts by applying a  threshold to convert the output of each algorithm to a Yes or 
No value. A variety of thresholds were applied to each algorithm. The verification analyses were 
based primarily on the algorithms’ ability to discriminate between Yes and No observations, as 
well as the extent of their coverage. 

 The study was comprised of two components. First, the algorithms were evaluated in 
near-real-time by the Real-Time Verification System (RTVS) of the NOAA Forecast Systems 
Laboratory (FSL), with results displayed on the World-Wide Web (http://www-
ad.fsl.noaa.gov/afra/rtvs/RTVS-project_des.html). Second, the verification results were re-
evaluated in post-analysis, with additional thresholds applied to each algorithm to provide a 
thorough depiction of algorithm quality. 

 Results of the intercomparison suggest that some algorithms perform somewhat better 
than others. In particular, these algorithms have somewhat larger values of the True Skill Statistic 
for comparable thresholds, and they have a slightly larger overall discrimination skill statistic. 
However, the best algorithms have very similar performance characteristics. In some (but not all) 
cases the algorithm performance is slightly better than the performance of the AIRMETs. Results 
of the study also suggest that further algorithm development is needed before newer algorithms 
will show large improvements over some of the older algorithms. Moreover, algorithms like 
Integrated Turbulence Forecasting Algorithm (ITFA) may benefit by not including some 
algorithms that don’t have much forecasting skill. 

 In further analyzing the study results, it will be necessary to develop appropriate methods 
to assign confidence intervals to the verification statistics. The daily statistics are quite variable, 
and this is where the largest differences were found between the RTVS and NCAR evaluations. 
The interpolation methods lead to some differences in the results of the verification, as well. 
However, the results are qualitatively the same between the verification systems, suggesting 
similar relationships between the forecasting capabilities of the various algorithms. Further 
analyses will incorporate additional data and more complex analyses. 

http://www-ad.fsl.noaa.gov/afra/rtvs/RTVS-project_des.html)
http://www-ad.fsl.noaa.gov/afra/rtvs/RTVS-project_des.html)
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1. Introduction 

 This report summarizes the initial results available from the 1998-99 intercomparison of 
the forecasting capability of various clear-air turbulence (CAT) forecasting algorithms. This 
study was undertaken by the Turbulence Product Development Team (PDT) of the Federal 
Aviation Administration’s (FAA’s) Aviation Weather Research Program (AWRP). 

 Purposes of the intercomparison were to (i) develop a baseline for the quality of current 
CAT forecasting algorithms; (ii) demonstrate to-date progress in the development of these 
forecasting tools; (iii) examine the strengths and weaknesses of the algorithms; and (iv) perform 
an evaluation that is independent, consistent, comprehensive, and fair. To meet the first goal, a 
number of different CAT algorithms were included in the study, as were the operational 
turbulence forecasts, or Airmen’s Meteorological Advisories (AIRMETs), that are produced by 
the National Weather Service’s (NWS’s) Aviation Weather Center (AWC). To meet the second 
goal, algorithms that have been developed over the last several years, with support of the AWRP, 
were included. The third goal will be met through the analyses presented in this report, as well as 
on-going studies of the results by the Quality Assessment Group (QAG) and by the algorithm 
developers. Finally, the fourth goal was met by pre-defining the verification methods and other 
features of the intercomparison, with approval by all members of the Turbulence PDT. In 
addition, the implementation of the intercomparison and the analyses of the results were the joint 
responsibility of the QAG, which includes the verification groups of the NOAA Forecast 
Systems Laboratory (FSL) and the National Center for Atmospheric Research Research 
Applications Program (NCAR/RAP), rather than the responsibility of the individual algorithm 
developers. 

 The study consisted of two major components: (i) a real-time component, in which the 
algorithms were evaluated in near-real-time by FSL’s Real-Time Verification System (RTVS; 
Mahoney et al. 1997), with results displayed on the World-Wide Web; and (ii) a post-analysis 
component in which the verification data were re-generated and examined in detail at NCAR and 
FSL. This report summarizes the displays and analyses that were presented by RTVS, including 
upgrades to that system that were implemented as a result of this project. Basic results from the 
real-time evaluation also are presented. Results of the post-analysis are presented in some detail 
and are compared to the real-time results. However, additional detailed analyses are ongoing and 
will be reported in a manuscript to be completed during the next several months. 

 The report is organized as follows. The study approach is presented in Section 2. Section 
3 briefly describes the algorithms that were included in the evaluation, and the data that were 
utilized are discussed in Section 4. The verification methods are described in some detail in 
Section 5. Results of the real-time study are presented in Section 6, with results from the post-
analysis presented in Section 7. Finally, Section 8 contains the conclusions and discussion. 

 
2.  Approach 
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A total of 14 CAT algorithms were included in the study.. The algorithms were applied to 
data from the RUC-2 (Rapid Update Cycle, Version 2) model (Benjamin et al. 1998), with model 
output obtained from the National Centers for Environmental Prediction.  Model forecasts issued 
at 1200, 1500, and 1800 UTC, with lead times of 3, 6, and 9 hours were included in the study.  In 
addition, turbulence AIRMETs, which are the operational turbulence forecasts issued by the 
National Weather Service’s Aviation Weather Center (NWS/AWC) were included for 
comparison purposes. Because of the emphasis placed on forecasting upper-level CAT, the 
evaluation was limited to the region of the atmosphere above 20,000 ft. 

The intercomparison was intended to begin on 1 December 1998 and continue through 1 
March 1999. However, data problems prevented the study from beginning until 21 December 
1998. Thus, the total possible number of forecasts was 909. However, smaller numbers of 
forecasts were actually included in the analyses, due to some missing data and the need to make 
the datasets consistent among all of the algorithms. 

The algorithm forecasts and AIRMETs were verified using Yes and No PIREPs of 
turbulence. In addition, vertical accelerometer (AVAR) observations which were systematically 
recorded from observations provided by certain United Airlines aircraft, were used as an 
indicator of No turbulence under certain conditions (to be described in Section 4). The algorithm 
forecasts were transformed into Yes/No turbulence forecasts by determining if the algorithm 
output at each model grid point exceeded or was less than a pre-specified threshold. A variety of 
thresholds was utilized for each algorithm. The Yes/No forecasts were evaluated using standard 
verification techniques available for Yes/No forecasts where observations are based on PIREPs. 

 
3. Algorithms 

The 14 CAT algorithms that were included in the evaluation are briefly described in this 
section. Further information about the algorithms and their development can be found in the 
references that are provided. 

Burke-Thompson (BT3.0): This algorithm is the Mellor-Yamada level-3.0 prognostic 
turbulence index developed by Burke and Thompson (1989), which is explicitly included in the 
RUC-2 model. Values are presented in units of turbulent kinetic energy. 

Brown-1: This index is a simplification of the Ri tendency equation originally derived by 
Roach (1970).  The simplifications involve use of the thermal wind relation, the gradient wind as 
an approximation to the horizontal wind, and finally some empiricism (Brown 1973).  

CCAT: The CCAT (Clark's Clear Air Turbulence) index has been used on a semi-
operational basis by the US Navy's FNMOC for at least 2 decades. It was developed by Leo 
Clark in consultation with Hans Panofsky, by applying aerodynamicist Theodore Theodorsen's 
theory for the generation of vortices to clear air turbulence.   There is no direct documentation on 
this index other than a definition and evaluation in an NRL verification study document (Vogel 
and Sampson 1996).   
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DTF3, 4, and 5: The DTF (“Diagnostic Turbulence Formulation”) algorithms were 
developed to take into account several sources of turbulent kinetic energy in the atmosphere (e.g., 
upper fronts),  with the output in terms of tke (Marroquin 1995, 1998). These algorithms are 
related to one another, with the algorithm associated with each larger algorithm number 
incorporating more complexity.  

Dutton: This index is based on linear regression analyses of a pilot survey of turbulence 
reports over the North Atlantic and NW Europe during 1976 and various synoptic scale 
turbulence indices produced from the then-operational UK Met Office forecast model (Dutton 
1980).  The result of the analyses was the “best fit” of  the turbulence reports to meteorological 
outputs for a combination of horizontal and vertical wind shears. 

Ellrod-2: This index was derived from simplifications to the frontogenetic function.  As 
such it depends mainly on the magnitudes of the potential temperature gradient, deformation and 
convergence (Ellrod and Knapp 1992). 

ITFA : The ITFA (Integrated Turbulence Detection and Forecasting Algorithm ) 
forecasting technique uses fuzzy logic to integrate available turbulence observations (in the form 
of PIREPs and AVAR data) together with a suite of turbulence diagnostic algorithms (a superset 
of  algorithms used in the verification exercise and others) to obtain the forecast (Sharman et al. 
1999).   

ITFA-S: This algorithm was developed using a multivariate statistical modeling method, 
based on fitting a multidimensional adaptive regression model, coupled with flexible 
discriminant analysis. With this approach, the indices are combined statistically in an optimal 
way to fit a set of observations, and the resulting model is used to forecast future events 
(Sharman et al. 1999; Tebaldi et al. 1999). This approach is still in early stages of development 
and the algorithm output was unavailable during much of the intercomparison period. Thus, it is 
included in the RTVS analyses, but not in the post-analysis. 

Richardson Number: Theory and observations have shown that at least in some situations 
patches of CAT are produced by what is known as Kelvin-Helmholtz (KH) instabilities.  This 
occurs when the Richardson number (Ri), the ratio of the local static stability to the local shears, 
becomes small.  Therefore, theoretically, regions of small Ri should be favored regions of 
turbulence (Drazin and Reid 1981; Dutton and Panofsky 1970; Kronebach 1964).   

SCATR: This index is based on attempts by several investigators to forecast turbulence by 
using a time tendency (i.e., prognostic) equation for the Richardson number (Roach 1970).  The 
version used in this study was based on a formulation of this equation in isentropic coordinates 
by John Keller, who dubbed the algorithm “SCATR” (Specific CAT Risk; Keller 1990).   

Vertical wind shear: Wind shear is known to be a destabilizing force from the time of 
Helmholtz.  This can be seen from its inverse relation to Richardson’s number: large values favor 
small Ri, which in turn produce turbulence in stratified fluids (Drazin and Reid 1981; Dutton and 
Panofsky 1970).   
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UlTurb: The UlTurb (Upper-Level Turbulence) forecasting index was developed by Don 
McCann at AWC (McCann 1997).  It attempts to correlate unbalanced (i.e., nongeostrophic) flow 
to regions of CAT.  Three different measures of this imbalance are computed, and the maximum 
of these measures relates to turbulence potential.  The correlation between unbalanced flows and 
turbulence is supported at least qualitatively from numerous field experiments, both over the 
continental U.S. and the North Pacific (Knox 1997).   

 
4. Data  

Data that were used in the study include model output, PIREPs, AVAR observations, and 
lightning. These data were obtained and used in near-real-time by the RTVS, and they were 
obtained and archived for use in post-analysis at NCAR. 

 Model output was obtained from the RUC-2 model, which is run operationally at 
NOAA’s National Centers for Environmental Prediction, Environmental Modeling Center. This 
model is the operational version of the Mesoscale Analysis and Prediction System (MAPS), 
Version 2 model, developed at FSL (Benjamin et al. 1998). The model vertical coordinate system 
is a based on a hybrid isentropic-sigma vertical coordinate, and the horizontal grid spacing is 
approximately 40 km. The RUC-2 assimilates data from commercial aircraft, wind profilers, 
rawinsondes and dropsondes, surface reporting stations, and numerous other data sources. The 
model produces forecasts on an hourly basis; however, only forecasts issued at 1200, 1500, and 
1800 UTC, with lead times of 3, 6, and 9 hours, were used in this study. 

 Algorithms were applied to the model output files to create algorithm output files. This 
part of the process was undertaken by the algorithm developers – the DTF and BT3.0 algorithm 
output files were computed at FSL, and all of the other algorithm output files were computed at 
NCAR. As part of this process, the algorithm output data were interpolated to flight levels (i.e., 
every 1,000 ft) rather than the raw model levels.  

 All available Yes and No turbulence PIREPs were included in the study. These reports 
include information about the severity of turbulence encountered, which was used to categorize 
the reports. In particular, reports of moderate to extreme turbulence were included in the 
“Moderate-or-Greater” (MOG) category. Information about turbulence type (e.g., “Chop,” 
”CAT”) frequently is missing, and was ignored. The aircraft type information in the PIREPs was 
used to categorize the reports into heavy, not-heavy, and unknown weight classes (see Section 
5.3). The heavy category was used for some analyses. 

 In addition to the PIREPs, vertical accelerometer (AVAR) data were obtained from 
certain United Airlines aircraft, through the Aircraft Communications, Addressing, and 
Reporting System (ACARS). These data are available every 10 minutes through the FSL Aircraft 
Data Web. The AVAR observations are a measure of the aircraft’s vertical acceleration, which 
can be associated with either internal motions of the aircraft, or external forces such as 
turbulence. Due to the effects of aircraft motions on the value of the vertical acceleration, the 
AVAR data only can be used as an indicator of no turbulence. Thus, only AVAR observations 
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that were within 20% of the value of the acceleration of gravity (9.8 ms-2) were included as 
observations of No turbulence. 

 Lightning data were obtained from the National Lightning Data Network (Orville 1991). 
These data were used to identify PIREPs that were likely to be associated with convection (see 
Section 5.3). 

 
5. Methods  

 This section summarizes methods that were used to match forecasts and observations, as 
well as the various verification statistics that were computed to evaluate the CAT forecasts. 

5.1 Matching methods 

RTVS and the NCAR verification systems use somewhat different methods to match the 
forecasts and observations. These different approaches are described in greater detail in Sections 
6 and 7. In general, both systems connect PIREPs to the nearest 8 grid points (four surrounding 
grid points; two levels vertically). The RTVS uses bi-linear interpolation, whereas the RAP 
system matches the PIREPs to the largest value among the gridpoints. AVAR observations were 
interpolated/matched to model gridpoints using the same approach as for PIREPs. 

Previous work at RAP concerning the appropriate time window for matching PIREPs to 
the model valid time has indicated that the length of this time window (within reasonable 
bounds) has little effect on overall results (e.g., verification over a month or season). However, 
the day-to-day statistics become more variable when a smaller time window is used, due to the 
smaller number of PIREPs that are available. A recent study at FSL (Mahoney 1998) indicated 
that ±1 hour is an appropriate time length to allow fair representativeness of the model valid time 
and to obtain an adequate number of PIREPs. Thus, this time window was applied in these 
analyses, both in real time and in post analysis. A time window of  ±1 hour around the model 
valid time also was used to evaluate the AIRMETs, so that the AIRMET verification results are 
comparable to the algorithm verification results. 

5.2 Statistical verification methods 

The verification methods selected for use in this study were based on standard 
verification concepts. The rationale for use of these statistics was seriously considered by the 
QAG, as well as by the Turbulence PDT. In addition, the limitations on the interpretation of the 
statistics due to characteristics of the verification data have been investigated and given very 
serious consideration.  The methods and statistics are described in general in this section. More 
detail on the general concepts underlying verification of turbulence forecasts can be found in 
Brown and Mahoney (1998). 

Turbulence forecasts and observations are treated here as dichotomous (i.e., Yes/No) 
values. In particular, AIRMETs essentially are dichotomous, and the algorithm forecasts are 
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converted to a variety of Yes/No forecasts by application of various thresholds for the occurrence 
of  turbulence. Thus, verification methods described here generally are based on the two-by-two 
contingency table (Table 1). In this table, the forecasts are represented by the rows, and the 
observations are represented by the columns. The entries in the table represent the joint 
distribution of forecasts and observations.   

Table 2 lists the verification statistics used in this evaluation. As shown in this table, 
PODy and PODn are the primary verification statistics based on the 2x2 verification table. It is 
important to recognize that PODy and PODn  are estimates of the conditional distributions that 
underlie the joint distribution of forecasts and observations, or they are functions of these 
distributions. For example, PODy is an estimate of the conditional probability of a Yes forecast 
given a Yes observation, p(f=Yes|x=Yes), where f represents the forecasts and x represents the 
observations. It also will be noted that Table 2 does not include the False Alarm Ratio (FAR), a 
statistic that is commonly computed from the 2x2 table. As described in Brown et al. (1997) and 
applied in previous turbulence verification studies (e.g., Brown and Bruintjes 1995; Brown 
1997), it is not possible to compute FAR using only PIREPs (or PIREPs and AVARs). This 
conclusion also applies to other statistics, such as the Critical Success Index and Bias, and is 
documented further in Appendix A. Furthermore, other verification statistics based on PIREPs 
(i.e., PODy and PODn) should not be interpreted in an absolute sense, but can be used in a 
comparative sense, for comparisons between algorithms and forecasts. Moreover, PODy and 
PODn should not be interpreted as probabilities, but rather as proportions of PIREPs that are 
correctly forecast. 

 Together, PODy and PODn measure the ability of the forecasts to discriminate between 
Yes and No turbulence observations. This discrimination ability is summarized by the True Skill 
Statistic (TSS), which frequently is called the Hanssen-Kuipers discrimination statistic (Wilks 
1995). Note that it is possible to obtain the same value of TSS for a variety of combinations of 
PODy and PODn. Thus, it always is important to consider PODy and PODn, as well as TSS. 
PODn is computed in two ways in this study – (i) using the negative PIREP observations and (ii) 
using the negative AVAR observations. 

The relationship between PODy and 1-PODn for different algorithm thresholds is the 
basis for the verification approach known as “Signal Detection Theory” (SDT). This relationship 
can be represented for a given algorithm by the curve joining the (1-PODn, PODy) points for 
different algorithm thresholds. The resulting curve is known as the “Receiver Operating 
Characteristics” (ROC) curve in SDT. The area under this curve is a measure of overall forecast 
skill (e.g., Mason 1982), and provides another measure that can be compared among the 
algorithms. These area values were computed only in the post-analysis. 

 As shown in Table 2, two other variables are utilized for verification of the turbulence 
forecasts: Impacted Area and Impacted Volume. Impacted Area measures the horizontal extent of 
the forecast Yes region (i.e., based on projecting the Yes forecasts at all levels to the surface); 
Impacted Volume measures the Yes forecast extent in three dimensions by summing all grid 
volumes with a Yes forecast.  
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  Impacted Volume is particularly useful for evaluation of the turbulence algorithms. In 
particular, since AWC forecast methods require “cake-shaped” forecast volumes, a major 
improvement could be attained and demonstrated by the model-based algorithms through 
improved vertical representations. That is, while the model-based algorithms may not 
demonstrate decreases in Impacted Area in comparison to AIRMETs, they should demonstrate 
decreases in Impacted Volume. Impacted Area also is less meaningful than Impacted Volume, 
since forecasts of turbulence with little vertical extent contribute as much to Impacted Area as 
forecasts of turbulence in thick layers. In general, Impacted Area and Impacted Volume are 
expressed as % Area and % Volume, by dividing the Impacted Area/Volume by the maximum 
Area/Volume possible, and multiplying by 100. The total possible area, in this case (limiting 
coverage to the area of the continental United States that can be included in AIRMETs) is 9.5 
million km2. Because the analyses are limited to 20,000 ft and above, the total possible volume is 
about 64 million km3. 

Impacted Area and Volume also can be combined with PODy to compute Area and 
Volume Efficiency values, 

Area Efficiency = (PODy / % Area) x 100 

and 

Volume Efficiency = (PODy / % Volume) x 100. 

 

These two statistics represent the % PODy per unit % Area and unit % Volume, respectively. 
While they are useful statistics for comparing algorithms, they also cannot be used alone. In 
particular, it is easy to obtain a large efficiency value when the Impacted Area/Volume is small, 
even if PODy is also very small. An appropriate use of these statistics is to compare the 
efficiencies of forecasting systems with nearly equivalent values of PODy (e.g., see Brown et al. 
1999). 

Emphasis will be placed on PODy, PODn, and % Volume. Use of this combination of 
statistics implies that the underlying goal of the algorithm development is to include most Yes 
PIREPs in the forecast “Yes turbulence” region, and most No PIREPs in the forecast “No 
turbulence” region (i.e., to increase PODy and PODn), while minimizing the extent of the fore-
cast region, as represented by % Volume. Volume Efficiency also should be computed to com-
pare algorithms with similar PODy and PODn values.  

5.3 Stratifications 

The verification results are stratified and limited using a variety of criteria. First, all of the 
evaluations are limited to PIREPs and algorithm output above 20,000 ft. Two categories of 
reported severity are considered: (i) reports of any turbulence severity (light and greater) and (ii) 
reports of MOG severity.  
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The  positive turbulence PIREPs also were subdivided into aircraft weight classes (large 
and small) when possible, using a table of aircraft characteristics that was previously prepared by 
the PDT. This categorization was done in an attempt to minimize the impact of aircraft 
differences on the results. In particular, if the aircraft associated with a PIREP was determined to 
weigh in excess of 60,000 lb, the PIREP was categorized as “Heavy.” Only PIREPs associated 
with heavy aircraft that could be assigned a weight using this table were included in the analysis 
associated with Heavy PIREPs. Thus, a large number of PIREPs were ignored by the Heavy 
stratification because the weight information was unavailable. 

Finally, the positive turbulence PIREPs were subdivided to eliminate reports that may 
have been located in convective regions. This stratification was based on the locations of 
lightning observations, utilizing lightning data from the National Lightning Data Network 
(Orville 1991).  If a PIREP was located within a 20-km radius of an area where there had been at 
least 4 lightning strikes during the previous 20 minutes, the observation was assigned a 
convective flag and was used only when statistics were generated for “All” PIREPs. 

These stratifications are used individually and in combination. Analyses reported here 
primarily emphasize the least and most restrictive categories. That is, we consider (i) the “All” 
category, in which all aircraft types were included and the lightning filter was not applied; and 
(ii) the “Heavy, Non-Convective” (HNC) category, in which only heavy aircraft were included 
and the lightning filter was applied. In both cases, PODy values were computed for both 
categories of severity – All and MOG. 

 
6. Real-time verification  

Real-time verification was provided for this intercomparison exercise to accomplish the 
following goals:  (i) to provide near real-time statistical feedback to the algorithm developers, 
AWC forecasters, and other users through an interactive Web-based graphical user interface; (ii) 
to test the verification methods, evaluate whether realistic algorithm thresholds were applied to 
the algorithm output, and gather feedback on statistical displays so that adjustments could be 
made prior to the post analysis; and (iii) to generate statistics using only the forecasts and 
observations available in near real-time, much like the activities within an operational forecasting 
environment. 

6.1 Mechanics 

The real-time verification was provided by the RTVS (Mahoney et al., 1997). The system, 
developed by FSL and funded by the FAA, was enhanced to ingest the 14 turbulence algorithms, 
to include statistics based on the AVAR observations, and to provide additional statistical 
displays and data stratifications.   

Model-based forecasts of turbulence, hourly turbulence observations from voice PIREPs, 
and automated AVAR reports were provided to RTVS through FSL's NIMBUS (Networked 
Information Management client-Based User System; Wahl et al. 1997).  Scheduled processes 
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were established within RTVS to access IDL (Interactive Data Language) routines for reading, 
writing, and stratifying data, bi-linearly interpolating algorithm output to observations locations, 
and generating statistical results. These processes ran continuously from 21 December 1998 - 31 
March 1999.  The algorithm thresholds used in the real-time verification are shown in Table 3. 
These thresholds were selected as an initial attempt to cover the range of possible forecasts. 

RTVS processed forecasts and observations that were available to the system at specified 
time periods.  If data were missing or were late getting to the system, and/or the system 
processing or data transmission failed, results were not generated for that specific time period in 
near-real-time. However, after the evaluation was completed, attempts were made to fill in 
missing time periods and re-analyze the data. Three algorithms, ITFS_S, SCATR, and BT3.0, 
had limited output during the evaluation.  However, these algorithms are included in the real-
time portion of the analysis, since they were available to users during some periods of the 
evaluation.   

In RTVS, the model output is connected to the PIREP and AVAR observations using the 
following process. First, the model-based output, available on the RUC-2 hybrid B coordinate 
system, is bi-linearly interpolated to flight levels to match the vertical resolution of the 
observations.  Second, the four grid points surrounding the observation are interpolated 
horizontally to the observation location (e.g. PIREPs or AVARs), producing a 
forecast/observation pair as described in Section 5.  If one of the grid points is missing or 
contains bad data, the forecast/observation pair is excluded from the statistical computations.  A 
±1-hr time window around the model valid time is used to connect both the PIREP and AVAR 
observations to the forecasts. 

A Web-based graphical user interface (http://www-ad.fsl.noaa.gov/afra/rtvs/RTVS-
project_des.html) was developed that provided the ability for model developers, PDT members, 
and AWC forecasters to examine the results during and after the evaluation.  An example of the 
interface is shown in Fig. 1.  Users are able to select a particular statistic, issue/lead time, and 
observation type from the interface.  Once the user submits the request, a GIF image is displayed 
on their screen. 

Web-based displays of the statistical results were presented through time and height 
series plots, as well as on scatter plots and contingency tables.  The plots were generated for each 
of the individual algorithms, issue and lead times, statistical measures, algorithm thresholds, and 
observation types.  Plots were produced daily and for the overall evaluation period.  For example, 
time and height series and scatter plots for the Ellrod Index are shown in Figs. 2 and 3.  The 
PODy and PODn values, as shown in Fig. 2, were computed, in this case, for the non-convective 
PIREP observations for an issue time of 15 UTC with a 3-hr lead time.  Each line on the time 
series plot represents one of the four algorithm thresholds.  Immediately, a large day-to-day 
variability is apparent in the time series plot.  In trying to understand this variability, the daily 
numbers shown Fig. 2, were compared to those generated for the post-analysis.  This comparison 
revealed some large differences between the daily statistical results generated by RTVS and the 
post-analysis, which indicated the important effect that the small numbers of PIREPs have on 
day-to-day statistical reliability.  In addition, some differences apparently were associated with 
the methods used to match PIREP/AVAR observations to model output. (These differences are 

http://www-ad.fsl.noaa.gov/afra/rtvs/RTVS-project_des.html)
http://www-ad.fsl.noaa.gov/afra/rtvs/RTVS-project_des.html)
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considered more closely in Section 7). This large day-to-day variability suggests that alternative 
methods, such as computing a running 7-day mean, are should be used for future evaluations 
(including on-going post-analyses).  These findings extend to the values shown in the scatter 
plots, as well. 

An example of the height series plots included on the RTVS web site also is shown in 
Fig. 2. The height series plots are generated using all available forecast/observation pairs 
computed during the evaluation; thus they contain sufficiently large sample sizes to produce 
reliable statistical results.  For these plots, the statistical measures are computed from 
forecast/observation pairs accumulated at each 5,000 ft level and above 20,000 ft. 

6.2 Overall results 

 Due to the large variations in the daily statistics, only overall results (for the entire 
experimental period) from RTVS are presented here. These results were re-generated following 
the experimental period using all available data. Results are presented for one PIREP category: 
Heavy, Non-convective (HNC) PIREPs, reporting moderate-or-greater (MOG) severity.  
Numerous displays not shown here are available on the Web at http://www-
ad.fsl.noaa.gov/afra/rtvs/RTVS-project_des.html.   

 
6.2.1 General comparisons 

The overall character of the statistical results is represented in Figs. 4-8  for the Heavy 
MOG NCPIREP-based verification for 15 UTC issue time with a 6-hr lead time covering the 
period from 21 December 1998 - 31 March 1999.  Figs. 4-8 show the relationship between PODy 
and % Volume [panels (a) and (b)] and PODn and % Volume [panels (c) and (d)].  Each point on 
the sets of algorithm line-segments represents a particular threshold used to create the Yes/No 
forecasts, with the AIRMETs represented by a single point.  During the real-time evaluation, the 
number of thresholds assigned to each algorithm was limited to four, due to the significant 
processing power required to evaluate additional thresholds.  However, statistics were computed 
using additional algorithm thresholds in the post-analysis, resulting in a more complete curve as 
apposed to line segments.  The thresholds were chosen to represent a range of turbulence 
forecasted over the specified domain, where a low threshold may produce turbulence forecasts 
covering the entire domain, while higher values of the threshold limit turbulence to specific well-
defined regions.  For example, the Ellrod Index with a threshold of 1x10-8 (located in the upper-
right-hand corner of Fig. 4a) produces turbulence over the entire domain, with the % Volume 
reaching 100%, resulting in a prefect PODy.  As noted earlier, the ultimate goal for improved 
forecasting performance is to maintain a reasonable % Volume while improving the PODy and 
PODn statistics. 

Initial examination of the overall results in Fig. 4, suggests that differences in 
performance between algorithms seem small, if at all noticeable. This impression is provided by 
the cluster of lines in Fig. 4 connecting the statistical values generated at each algorithm 
threshold.   However, further investigation shows that for a specific volume, there is 
approximately a 20-30% difference in the PODy value and a 10-50% difference in PODn 
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(depending on the % Volume) between some of the algorithms.  For instance, with an average 
volume of 20% (the % Volume for the AIRMETs), the PODy (PODn) values range among the 
algorithms from 0.21 to 0.50 (0.70 to 0.83), suggesting that some algorithms are more efficient 
than others at capturing turbulence conditions.   

Subtle differences are apparent between the various algorithms, as shown in Fig. 4.  For 
instance, the algorithms with the highest overall PODy include the Ellrod Index, ITFA, DTF3, 
DTF4, DTF5, and Dutton.  The Richarson Number, SCATR, BT3.0, and ITFA_S have the lowest 
PODy values.  Shear, Brown, and CCAT are somewhere in the middle.  The best PODn values 
are represented by the Richardson Number and DTF3,  DTF4, DTF5, Ellrod Index, and ITFA.  
The algorithms with the worst PODn include SCATR and ITFA_S; however, these two 
algorithms were not functioning correctly for several weeks at the beginning of the evaluation 
period.  The character of the results for ULTURB is different from the others.  In particular, the 
PODy value for ULTURB is smaller than the PODy for all other algorithm until a % Volume of 
40% is reached, at which time the PODy improves.  Similarly, the PODn value for ULTURB is 
better than all other algorithms until a % Volume of 40% is reached, at which time it drops 
dramatically.  This result may be due to a combination of the manner in which the turbulence is 
produced by that algorithm and the interpolation scheme used by RTVS (see the post-analysis 
results for further detail).  Nevertheless, the best algorithms in terms of PODy, PODn, and % 
Volume for the HNC, MOG PIREPs appear to be the Ellrod Index, ITFA, and DTF3 (with other 
algorithms, such as DTF4, DTF5, and Dutton following closely behind).  Further analysis and a 
detailed description of algorithm performance are presented in Section 7. 

The PODy value for the AIRMET results is nearly 8% larger than for the algorithms, for 
algorithm thresholds leading to a % Volume of 20%. These comparisons between the verification 
results for the AIRMETs and the model-based turbulence algorithms suggest that the 
fundamental differences between these forms of forecasts must be taken into account.  For 
instance, forecasters who issue AIRMETs have a number of different types of supplementary 
information sources available to them to aid in formulating their forecasts (e.g. satellite data, 
current PIREPs).  These types of information are not taken into account by the automated 
turbulence algorithms.  In fact, the AWC forecasters were able to use forecasts from any of the 
14 turbulence algorithms during the algorithm intercomparison exercise as guidance.   

 

6.2.2 Variations with lead and issue time 

Figures 4-6 illustrate the variations in PODy, PODn, and % Volume for the 3, 6, and 9 hr 
lead times, for forecasts issued at 1500 UTC.  Important variations with lead time are difficult to 
identify by inspecting the individual plots.  However, the algorithms in Figs. 4-6 on panel (a) 
tend to cluster together as the lead time increases while those in panel (b) spread apart, 
suggesting that some algorithms may be more susceptible to a change in PODy and % Volume 
with an increase in forecast lead time.  On the other hand, the PODn and % Volume for 
ULTURB, Richardson Number, and SCATR change more dramatically with lead time than any 
of the other 11 algorithms.   
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Results for the Ellrod Index are shown as a specific example. For this algorithm, as the 
lead time increases from 3 to 6 hr, the PODy value at a threshold of 4x10-7 decreases from 0.59 
to 0.51, with an increase in PODn from 0.67 to 0.73; at the 6x10-7 threshold, PODy decreases 
from 0.47 to 0.31 as the PODn again increases from 0.84 to 0.91.  As the lead-time increases 
another 3 hr, the PODy values for the 4x10-7 and  6x10-7 thresholds decrease to 0.50 and 0.35, 
respectively, as the PODn values change to 0.83 and 0.89.  The % Volume value in these 
examples stays nearly the same for the 3-, 6-, and 9-hr lead times.  These results possibly indicate 
that the models tend to advect areas of turbulence, but may not necessarily have the turbulence in 
the correct location.  Variations with lead time are considered further in Section 7, with the post-
analysis results. 

Differences in statistical results for  the 12, 15 and 18 UTC issue times with a 6 hr lead 
time are illustrated by comparing Figs. 4, 7, and 8.  Overall, the apparent variations with issue 
time are small, as indicated by the similarities between panels (a) – (d) among the figures.  For 
instance, the PODy value for the Ellrod Index at threshold 4x10-7 decreases from 0.57 to 0.51 
from the 1200 UTC (Fig. 7) to 1500 UTC (Fig. 4) issue time, as the PODn increases.  
Interestingly, however, the PODy value increases from 0.51 to 0.55 from the 1500 UTC (Fig. 4) 
to the 1800 UTC (Fig. 8) issue time. The PODn remains generally the same over the period.  
Only slight changes in % Volume are observed. 
 
6.2.3 Variations with height 

Height series plots of PODy and PODn above 20,000 ft for the 6-hr forecasts issued at 
1500 UTC, with verification based on the MOG HNC PIREPs are shown in Figs. 9 and 10.  The 
data chosen for display on these plots were filtered to select the algorithm thresholds with the 
maximum TSS value, since the TSS combines both PODy and PODn.  The variations in PODy 
(Fig. 9) and PODn (Fig. 10) with height are small, with only a slight increase above 35,000 ft.  
However, the variability in PODy among the algorithms is larger than the variability in PODn.  In 
fact, PODn values for nearly all algorithms are greater than 0.80, while the PODy values are 
generally less than 0.50, with some exceptions.  The algorithms with the largest PODy values, 
including the Richardson number, ULTURB, and SCATR, also are those with the worst values 
of PODn.  These results suggest that variations in the statistics with altitude are small, and that 
the algorithm forecasts generally capture the "No" turbulence events better than they capture the 
"Yes" turbulence events.   

 A specific example of the variations in PODy and PODn with height is shown for the 
Ellrod Index in Fig. 11.  The data are for MOG HNC PIREPs for the 1500 UTC 6-hr forecasts.  
Each line on the plot represents one of the four thresholds. Some improvements in PODy are 
evident between the 30,000 - 35,000 ft level and the 35,000 - 40,000 ft level for all thresholds.  
Correspondingly, the value of PODn decreases between these levels. 

6.3 Issues and conclusions 

Verification statistics were generated in near-real-time by RTVS and were provided to 
anyone interested through statistical displays on the Web. Specifically, this process provided near 
real-time feedback (i) to model developers so that thresholds and techniques in the models could 
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be identified and adjusted; (ii) to forecasters so that information on algorithm quality could be 
used during the forecasting process; and (iii) to those evaluating the algorithms so that 
information could be easily shared and compared.  In addition, several important issues were 
discovered through the evaluation process.  These included:  (i) inability to compute daily values 
of the verification statistics due to the statistical instability resulting from the low number of 
PIREPs available on the daily time scale; (ii) variations in statistical values between RTVS and 
the post-analysis in response to differing interpolation methods; and (iii) missing data due to 
system processing failures and data transmission problems. 

 Overall, the results indicated a clear trade-off between PODy, PODn and % Volume with 
variations in algorithm thresholds, as shown in Figs. 4-8.  The quality of the forecasts changed 
only slightly with changes in forecast lead time.  Finally, height series results (for algorithm 
thresholds selected to maximize the TSS) indicated a large amount of variability in PODy among 
the 14 algorithms.  However, the majority of the algorithms had values of PODn clustered above 
0.80 in these diagrams.  This result suggests that the algorithms may be able to capture areas with 
no turbulence better than they can capture areas with turbulence. 
 

7. Post-analysis 

This section describes initial results of the verification analyses that have been undertaken 
at NCAR following the real-time component of the intercomparison study. This effort, which is 
still ongoing, has included numerous steps. These steps include cataloging available data and 
making efforts to fill in the missing pieces, selecting additional algorithm thresholds to provide a 
more complete picture of algorithm performance, implementing some additional statistical 
methods, and re-evaluating the algorithm output using the additional data and techniques. In 
addition, the efficiency of the NCAR verification software was enhanced, to make it possible to 
run multiple analyses of the data in a reasonable amount of time. The process of filling in 
missing data (especially algorithm output) is still ongoing. Thus, results presented here may 
change slightly as additional forecasts are added to the archive in the future. The verification 
analyses were limited to dates and times when algorithm output was available for all algorithms, 
so all results would be comparable. A total of 175 3-hr forecasts, 167 6-hr forecasts, and 160 9-hr 
forecasts were included. 

Two of the algorithms that were included in the real-time verification analysis either have 
not been included in the post-analysis, or were included to a minimal extent. In particular, the 
ITFA-S algorithm had very limited output during the real-time portion of the study, and it has not 
been possible thus far to create the missing files (however, we hope that the output will be 
available for ongoing analyses sometime in the future). Hence, results for ITFA-S are not 
considered here. In addition, results for BT3.0 were limited because we have been unable to 
identify thresholds that are small enough to detect more than a very small fraction of the 
turbulence PIREPs. Thus, results for BT3.0 are included in some of the figures, but not in the 
detailed analyses. BT3.0 output will be examined further in an effort to obtain more complete 
results. 
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The mechanics of the verification analyses applied in the NCAR verification system are 
somewhat different than the methods used in RTVS. These methods are described in Section 7.1, 
and some effects of the differences are considered in Section 7.2.1 and in Appendix B. Some 
results of the post-analyses are presented in Section 7.2. 

7.1 Mechanics 

The NCAR verification system uses a matching approach to connect algorithm output to 
PIREPS. With this method, a PIREP is first matched to all of the model levels (i.e., flight levels) 
in the range of altitudes reported in the PIREP. Then, at each level, the four surrounding model 
grid points are compared to the PIREP. If any one of the four grid points has a Yes forecast, then 
a Yes forecast is assigned to the PIREP. If none of the four grid points  has a Yes forecast, then a 
No forecast is assigned to the PIREP. The same procedure is applied to the AVAR observations.  
Essentially, this approach amounts to using the largest value of the algorithm output at the four 
surrounding grid points as the forecast assigned to the PIREP4. 

To mimic this system, the AIRMETs also are treated somewhat differently by the NCAR 
verification system than by RTVS. In particular, the RUC-2 grid is overlaid on the AIRMETs and 
PIREPs. If any of the four RUC-2 grid points surrounding a PIREP is inside an AIRMET, then 
the PIREP is assigned a Yes AIRMET forecast; if none of the grid points are inside an AIRMET, 
then the PIREP is assigned a No AIRMET forecast. 

Additional thresholds were included in the analyses for all algorithms. These thresholds 
were selected by examining the real-time results (e.g., Figs. 5-8) to identify regions where there 
was a large jump in PODy and/or PODn between the original thresholds. Additional thresholds 
also were added after examining some of the initial post-analysis results. Table 4 shows the 
algorithm thresholds that were used in most of the post-analyses. Note that some additional 
thresholds were used for some of the results presented in the tables. 

7.2 Results 

Overall results are presented here for two categories of PIREPs: (i) All reports and (ii) 
HNC reports. Results also are broken down by lead time. The analyses were limited to only 
include forecasts when data were available from all algorithms, and when AIRMETs, PIREPs, 
AVAR observations, and lightning data also were available. 

 
7.2.1 Overall results for All PIREPs 

Overall results for All PIREPs are shown in Figs. 12-14, for lead times of 3, 6, and 9 
hours, respectively. A total of 175 3-hr, 167 6-hr, and 160 9-hr forecasts were included. The plots 
in Figs. 12-14 were created by combining the counts for all issue times together for each lead 
time. The figures include plots of PODy (MOG PIREPs) versus % Area, % Volume, and 1-

                                                 
4 Note that in the case of Richardson number, the minimum value is assigned. 



 17

PODn. Because % Area is not one of the primary verification measures of interest, plots showing 
this statistic are only included in Fig. 12. As in Figs. 5-8, the individual points on the algorithm 
curves represent the various thresholds used to create Yes/No forecasts. Better forecasts are 
located closer the upper lefthand corner of the diagrams. Two groups of algorithms are shown for 
each combination of statistics, in order to make the diagrams more clear. Group A includes 
Brown-1, ULTURB, DTF3, DTF4, DTF5, ITFA, and Ellrod-2, while Group B includes CCAT, 
Dutton, Richardson number, BTF3.0, and Shear. Each plot also includes a point representing the 
AIRMETs. In all cases, it is desirable for the curves and points to be as close to the upper 
lefthand corner of the diagram as possible.  

The first impression from Figs. 12-14 is that, in general, the forecasting performance is 
very similar among the algorithms. However, some differences are apparent even in these 
crowded plots. Some of these differences demonstrate the importance of examining a variety of 
verification measures. 

The plots of PODy vs. % Area in Fig. 12 suggest that, as expected, the algorithm areas 
are larger than those attained by the AIRMETs. This result most likely is due to the thin model 
layers that together can contribute substantially to the area impacted by the whole forecast. The 
plot in Fig. 12b also indicates that the relationship between PODy and % Area for SCATR is 
quite different from the relationships for the other algorithms. This result, along with other 
SCATR results, suggests that SCATR may not have been functioning correctly during the 
intercomparison (note that SCATR data for the period prior to 21 January, when there were 
known errors in SCATR, have been removed from the dataset). 

The plots of PODy vs. % Volume in Fig. 12 suggest that all of the algorithms perform 
about the same with respect to this combination of variables, except for ULTURB and SCATR. 
In particular, ULTURB appears to capture a larger proportion of Yes PIREPs with a smaller 
forecast volume than the other algorithms, while SCATR performs more poorly than the other 
algorithms in this regard. This result for ULTURB is somewhat different than the results 
obtained by RTVS. For example, Fig. 4 suggests that ULTURB has similar PODy values to the 
other algorithms, at least for moderate % Volume values. For larger % Volume, however, RTVS 
also suggests that ULTURB has a larger value of PODy than the other algorithms. This 
difference between the performance of ULTURB and the performance of the other algorithms 
appears to be associated with the fact that ULTURB generally forecasts a large number of very 
small, distinct, areas of turbulence (many as small as a single grid point) rather than forecasting 
the more continuous region of turbulence that is typical of the other algorithms. Differences 
between the RTVS and post-analysis results are primarily due to differences in the methods used 
to match the forecasts to the PIREPs (see Appendix B). 

Plots of PODy vs. 1-PODn, shown in Figs. 12e and 12f, suggest very different results for 
ULTURB than the % Volume plots. In fact, with respect to this combination of statistics, 
ULTURB performs more poorly than the other Group A algorithms. This result suggests the 
importance of examining more than one statistic when considering the quality of a forecast or 
algorithm. It also suggests that the % Volume statistic by itself can be misleading, particularly if 
a forecast is highly discontinuous. 
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For both the comparisons of PODy with % Volume and with 1-PODn (Figs. 12c-12f), 
AIRMETs can be used as a separator for the algorithm curves. Curves that approximately cross 
or lie just below the AIRMET point in Fig. 12c include ULTURB, Ellrod-2, and ITFA. For the 
PODy vs. 1-PODn plot, the same curves approximately cross the AIRMET point, except for 
ULTURB, which lies well below the point. All of the Group B algorithm curves lie below the 
AIRMET point, in both comparisons (Figs. 12d and 12f). 

The 3-hr results can be examined in greater depth by selecting appropriate, comparable 
thresholds for each algorithm and comparing the individual statistics among the algorithms. One 
rationale for this process is to select thresholds that lead to a PODy value that is approximately 
the same as the value attained by the AIRMETs. Table 5 shows the results of this exercise for the 
3-hr forecasts, based on All PIREPs. This table includes a variety of statistics associated with the 
specified thresholds. It also includes an estimate of the area under the curve relating PODy 
(MOG PIREPs) to 1-PODn (i.e., the ROC curves) for each algorithm, which provides an overall 
measure of the quality of the forecasts provided by that algorithm. Note that this statistic is not 
included for the AIRMETs since only one point is associated with the AIRMETs, whereas many 
points are associated with the algorithms; the area estimate for the AIRMETs would be smaller 
than the estimates for the algorithms, simply due to the difference in number of points. 

Two values of PODy are included in Table 5 – one for All severities and one for MOG 
severities. In almost all cases, PODy (MOG) is slightly larger than PODy (All), which suggests 
that the MOG PIREPs are somewhat easier to capture than are PIREPs associated with less 
severe conditions. Two values of PODn also are included in Table 5 – one based on negative 
PIREPs, and the other based on AVAR data. Surprisingly, these two values of PODn are nearly 
the same, even though the sources of the data are so different. For some algorithms, the value of 
PODn for the PIREPs is slightly larger, and in other cases the value for the AVARS data is 
slightly larger. However, the differences are always quite small. The PODn values do, however, 
vary among the algorithms, with the largest values achieved by the AIRMETs, DTF3, DTF4, 
Ellrod-2, ITFA, and Richardson number. 

The True Skill Statistic (TSS) values also are similar, regardless of the type of data used 
to compute PODn. Among the different forecasts and algorithms, the largest values are achieved 
by the AIRMETs, DTF3, Ellrod-2, and ITFA. With regard to the ROC curve area, the best 
algorithm results are attained by DTF3, Ellrod-2, ITFA, and Richardson number. 

In terms of  % Volume and Volume Efficiency, as expected from Fig. 12, the best 
performance is achieved by ULTURB. Other forecasts and algorithms with relatively good 
performance in this regard are the AIRMETs, Ellrod-2, and ITFA. The Richardson number has a 
relatively large % Volume value, and hence, a relatively small Volume Efficiency. 

Thus, the results in Table 5 suggest that there are some discernible differences in the 
results among the algorithms, with the apparently best, all-around,  algorithm performance 
associated with Ellrod-2, ITFA, and DTF3. Of course, the statistical significance of the 
differences between the algorithms have not been tested, but many of the differences are unlikely 
to be statistically significant. 
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7.2.2 Comparisons among lead and valid times 

The algorithm curves for the 6- and 9-hr lead times (Figs. 13 and 14) are qualitatively 
similar to the 3-hr results in Fig. 12, although the quality of the forecasts does seem to degrade 
some by the 9-hr lead time. In particular, all of the curves in Figs. 14c and d lie below the 
AIRMET point, whereas several comparable curves lie above the AIRMET point in Fig. 12.  

Tables 6 and 7 were created in the same way as Table 5, except they are for the 6- and 9-
hr forecasts. In particular, these tables include verification statistics for algorithm thresholds for 
which PODy (MOG PIREPs) is approximately equal to the PODy for the AIRMETs. The results 
in Table 6 (6-hr forecasts) are nearly the same as the results in Table 5 (3-hr forecasts). In fact, in 
some cases the 6-hr statistics are somewhat better than the 3-hr results. For example, the Curve 
Area and Volume Efficiency both are somewhat larger for the 6-hr forecasts than for the 3-hr 
forecasts, for most algorithms. Comparing the thresholds in Table 6 to those in Table 5 indicates 
that only the threshold selected for CCAT changed between the two lead times – for all other 
algorithms, the same thresholds were used for both lead times.  

In contrast to the 6-hr statistics, results for the 9-hr forecasts (Table 7) are quite different 
from the results for the other two lead times. In particular, (i) among all of the algorithms, only 
DTF3 maintains relatively large PODn and TSS values; (ii) the Curve Area statistics are 
somewhat smaller for all of the algorithms; and (iii) the Volume Efficiency values are somewhat 
smaller for most algorithms. For the 9-hr forecasts, the Curve Area statistics are best for DTF3, 
Ellrod-2, ITFA, and Richardson number, whereas the best Volume Efficiency values are 
achieved by Ellrod-2, ITFA, and ULTURB. It is interesting to note that the thresholds used in 
Table 7 are different from those in Table 6, for most algorithms (with the exception of Brown-1, 
CCAT, SCATR, Shear, and ULTURB). Thus, it appears that a re-calibration of the algorithms 
may occur with increasing lead time. 

The 6-hr results are somewhat puzzling. In particular, comparisons of Tables 5 and 6 
indicate that the algorithms’ forecasting capability does not degrade with lead time, at least not 
between 3 and 6 hr. Because these forecasts were aggregated across issue times, it is possible that 
this result is due to confounding of issue/valid time effects with the lead time effects. This 
possibility is investigated further, later in this section. 

Variations of the statistics with lead time are considered directly for three algorithms 
(DTF3, Ellrod-2, and ITFA) in Fig. 15. This figure shows the curves relating PODy to 1-PODn  
and % Volume for these algorithms, with separate curves on each plot for the three lead times. 
The curves in Fig. 15 indicate that the relationship between PODy and % Volume changes very 
little (or not at all) among the three lead times, for all three algorithms. However, the points are 
not coincident, which suggests a re-calibration between lead times. For Ellrod-2 and ITFA, small 
differences are noticeable among the curves relating PODy to 1-PODn, and these differences are 
consistent with the differences noted among Tables 5-7, with larger differences apparent for 
Ellrod-2 than for ITFA, and the 6-hr lead time curves appearing to be somewhat better than the 
curves for the 3- and 9-hr lead times. Differences among the PODy vs. 1-PODn curves for DTF3 
are very small.. 
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As noted earlier, the  results in  Tables 5-7 and Figs. 15b, d, and f suggest a re-calibration 
of the algorithms may occur with increasing lead time. Variations of the statistics with lead time 
are considered further in Table 8 using the thresholds applied in Table 5 (i.e., the thresholds that 
were appropriate for 3-hr forecasts). Results for three algorithms (DTF3, Ellrod-2, and ITFA) are 
included in Table 8. As shown in this table, the PODy values tend to decrease somewhat with 
lead time, with the decrease from 3 to 6 hr smaller than the decrease from 6 to 9 hr. 
Correspondingly, the PODn values tend to increase somewhat as lead time increases. The 
resulting effect on TSS is to increase or maintain the value of this statistic between the 3- and 6-
hr lead times, and to decrease the value between the 6- and 9-hr lead times. Similarly, the ROC 
curve area increases slightly between the 3- and 6-hr lead times, and decreases slightly between 
the 6- and 9-hr forecasts. The values of  % Area and % Volume in Table 8 actually decrease 
noticeably as lead time increases. In fact, this effect is strong enough to compensate for the 
decreases in PODy, so that the Volume Efficiency values are slightly larger for the 9-hr forecasts 
than for the 3-hr forecasts. Comparing the results in Table 8 to those in Fig. 15 suggests the value 
in examining the results for a variety of thresholds, as in the ROC diagram; results for a single 
threshold would be misleading. 

These results are somewhat different from the lead time results obtained from RTVS 
(Section 6.2.2). However, as noted earlier, these results also may be confounded with the effects 
of forecast valid time. In particular, the longer-lead time forecasts, overall, have later valid times 
than the shorter-lead time forecasts. To take into account the effects of issue/valid time, Fig. 16 
shows verification curves for 3-, 6-, and 9-hr DTF3, Ellrod-2, and ITFA forecasts, all valid at 
2100 UTC. Note that, although these plots take into account the effect of valid time, possible 
issue time effects are not considered. Results in Fig. 16 suggest the differences among lead times 
are relatively small; however, in the ROC diagrams (Figs. 16a, c, e), there is a suggestion that the 
3-hr forecasts have somewhat poorer performance than the 6- and 9-hr forecasts. This result, as 
mentioned before, is somewhat counter-intuitive, but is relatively small. The PODy vs. % 
Volume curves (Figs. 16b, d, f) are very similar for the three lead times. 

 Figure 17 concerns differences in the verification statistics among issue times. In 
particular, the curves in Fig. 17 show verification results for three algorithms (DTF3, Ellrod-2, 
and ITFA), for 6-hr forecasts issued at 1200, 1500, and 1800 UTC. These results suggest that in 
some cases (particularly for Ellrod-2), the verification statistics for CAT forecasts issued at 1200 
are slightly better than the statistics for forecasts issued at the other lead times. 

 
7.2.3 Comparisons between PIREP groups 

Results thus far have only considered the All PIREP category. In this section, the results 
for All PIREPs are compared to the results for the HNC PIREPs. Particular attention is given to 
the 3-hr forecasts. The HNC restriction on the PIREPs, for the 3-hr lead time, resulted in a 56% 
decrease in the number of MOG PIREP data points (from 3,092 to 1,375). 

Figures 18-20 show the algorithm performance curves based on the HNC PIREPs, for 3-, 
6-, and 9-hr lead times, respectively. These plots have the same form as the plots in Figs. 12-14. 
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Comparison of the two sets of plots suggests that is difficult to distinguish differences between 
the results associated with the two sets of PIREPs. 

The All-PIREP and HNC-PIREP results for three algorithms (again, DTF3, Ellrod-2, and 
ITFA) are compared more clearly in Figs. 21 and 22, for 3- and 6-hr lead times, respectively. As 
shown in these figures, the verification curves do not vary greatly in response to the different sets 
of PIREPs. The curves for 3-hr ITFA forecasts exhibit the largest differences in results between 
the two groups, with the results for the HNC PIREPs slightly better than the results for All 
PIREPs. For DTF3 and Ellrod-2, and for the 6-hr ITFA forecasts, the two curves are nearly 
coincident. Note that the 1-PODn values do not change between the two groupings of PIREPs  
because the No PIREPs are not affected by this stratification. Figs. 21 and 22 also include results 
for the AIRMETs for the two sets of PIREPs. These AIRMET points suggest that use of the HNC 
PIREPs results in only a very small change in PODy for these forecasts. 

Results based on the HNC PIREPs are examined for specific algorithm thresholds in 
Tables 9-11, for 3-, 6-, and 9-hr forecasts. Like Tables 5-7, these tables are based on a selection 
of algorithm thresholds that result in values of PODy (for MOG PIREPs) that are similar to the 
PODy value the AIRMETs. Although the PODy value for the AIRMETs, based on the HNC 
PIREPs, is slightly smaller than the value for All PIREPs, the AIRMET statistics for All PIREPs 
are used in Tables 9-11, to make the results comparable to the statistics in Tables 5-7.   

In general, the results in Tables 9-11 are very similar to the results in Tables 5-7. In 
particular, the PODn values indicate the best performance is by the AIRMETs, DTF3, DTF4, 
Ellrod-2 and ITFA; the TSS values are largest for the AIRMETs, DTF3, DTF4, DTF5, Ellrod-2, 
and ITFA; and the Volume Efficiency values are largest for Ellrod-2 and ITFA, in addition to 
ULTURB. Finally, the largest values of the ROC curve area are achieved by DTF3, ITFA, and 
Ellrod-2. An important difference between Tables 5-7 and Tables 9-11 is the difference in 
thresholds required to achieve PODy values similar to the values for the AIRMETs. This 
difference is particularly notable in Table 9 (3-hr forecasts) where all of the thresholds increase, 
except for the threshold for the Richardson number. This adjustment in the thresholds necessarily 
means that the PODn and TSS values in Table 9 are larger than the PODn and TSS values in 
Table 5, since the same sets of negative PIREPs and AVAR observations were used to compute 
both sets of statistics. This result suggests that there is at least a small re-calibration of the 
algorithms associated with using the more restrictive set of Yes PIREPs. 

7.3 Summary 

In general, differences found thus far among the performance characteristics of the 
various algorithms are relatively small, except for certain differences that stand out. For example, 
while ULTURB clearly achieves the highest Volume Efficiency, it does so by forecasting very 
small discontinuous regions, and by mis-classifying many negative turbulence reports as positive. 
Moreover, the results suggest that the SCATR index is not functioning correctly. Other 
algorithms clearly do not perform as well as the top group of algorithms. In particular, CCAT, 
the Richardson number, Dutton, and Shear generally exhibited poorer performance, overall, than 
the other algorithms. Algorithms that performed the best overall include the DTF algorithms 
(especially DTF3), Ellrod-2, and ITFA. Differences in performance, based on PODy and PODn, 
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associated with increases in lead time were found to be relatively small. Moreover, verification 
curves based on % Volume did not vary with lead time, except for an apparent re-calibration of 
specific threshold points. In addition, differences in the results associated with restricting the 
PIREPs to Heavy aircraft and non-convective conditions appear to be small, and generally are in 
the direction of a slight increase in PODy. Some differences also were noted between the real-
time and post-analysis results. These differences appear to be associated primarily with 
differences in the methods used to associate forecasts to PIREPs. In addition, some differences 
may result from the use of slightly different PIREP datasets and from different aggregations of 
the data used in the analyses (e.g., some of the post-analysis results were based on aggregating 
across issue time). 

 
8. Conclusions and discussion 

This intercomparison exercise not only developed a baseline for turbulence algorithm 
development, but also tested the robustness of the verification methods. Comparisons of the 
statistical results generated by the RTVS and the post-analysis indicate that the results are 
somewhat sensitive to the method used to match turbulence forecasts to the observations. These 
comparisons also indicated that the day-to-day statistics are unreliable and unstable, as a 
consequence of small PIREP numbers, particularly when the observations are stratified by 
aircraft weight, turbulence severity, or convection. This instabilty is reduced when larger 
numbers of PIREPs are obtained by combining the results across several days, or when 
computing overall statistics. Improvements in the PIREP decoders and the manner in which 
PIREPs are reported would lead to increased numbers of reports, and greater stability in the 
results. 

Differences in the results between the real-time and post- analysis, which arise as a result 
of differences in the approaches used to connect forecasts to PIREPs, are sometimes fairly large. 
However, rather than creating a conflict, these differences expand the breadth of the analysis. In 
particular, the different approaches, when used together, and in combination with appropriate 
verification statistics, allow diagnosis of different characteristics of the algorithms’ forecasting 
capabilities. 

 Despite the methodological and data differences between the systems, the basic 
conclusions are consistent between the real-time and post-analysis results.  Overall, the statistical 
results indicate that forecasting performance is similar among most of the turbulence algorithms. 
However, some algorithms (e.g., Ellrod-2, DTF3, ITFA) appear to have somewhat better overall 
performance characteristics than the other algorithms. 

 The analyses suggest the value of considering a variety of algorithm thresholds when 
evaluating the turbulence algorithms. In particular, many of the differences among groups of 
forecasts (e.g., between lead times) involved essentially a re-calibration of the algorithms rather 
than true changes in performance. This result would have been hidden if only single thresholds 
were considered. Moreover, the verification curves provide a two-dimensional approach for 
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evaluating the superiority of one algorithm over another; such superiority would be difficult (or 
impossible) to identify if only a single threshold were used for each algorithm. 

The results also demonstrate the large trade-offs between the predicted extent of the 
turbulence forecasts relative to their ability to detect the occurrence of turbulence.  In addition, 
the RTVS analyses indicated a large variability in PODy among the 14 algorithms when 
thresholds were selected to maximize TSS.  However, the PODn values for a majority of 
algorithms in this analysis clustered above 0.80.  This result suggests that the algorithms may be 
able to capture areas with no turbulence more consistently than they can capture areas with 
turbulence. 

One important, missing component of these analyses is an indication of statistical 
significance. Unfortunately, standard statistical methods to estimate significance, including 
parametric confidence intervals, are inappropriate for application to these verification measures. 
Efforts will be undertaken to develop methods that are appropriate. However, it will be difficult 
(or impossible) to develop methods that take into account all the sources of uncertainty 
associated with this analysis (e.g., the uncertainties associated with PIREP location and severity). 

The results of this study suggest that further development of ITFA may benefit from 
eliminating some algorithms. For example, SCATR seems to have little or no skill at forecasting 
turbulence. Shear is another algorithm that potentially could be excluded; this result may be 
connected to the fact that shear is a component in many of the other turbulence algorithms. 

The 1998-99 intercomparison results will be extended and analyzed further. Efforts will 
be made to continue to fill in some of the missing algorithm data, including the creation of 
algorithm output for the ITFA-S algorithm for a subset of the days. PIREPs that were recently 
obtained from Northwest Airlines (NWA) also will be used to enhance the PIREP dataset, and 
NWA turbulence forecasts will be included in the intercomparison. The continuing analyses will 
include a closer look at short-term (perhaps over 3-or-more-day periods) variations in the 
verification statistics. These evaluations will allow identification of particular situations in which 
one algorithm performs better than another, as well as straightforward computation of confidence 
intervals based on day-to-day variability. Further efforts also will be made to develop and apply 
confidence intervals for the overall results. Finally, available feature detectors (e.g., jet stream, 
and possibly mountain wave) will be applied to the forecasts to determine the effects of these 
features on the verification results. 

 Plans also are being made to implement a turbulence algorithm intercomparison exercise 
for the winter of 1999-2000 (perhaps not beginning until February 2000). This intercomparison 
again will involve a real-time component using the RTVS, followed by an in-depth post-analysis. 
A number of questions need to be answered prior to the start of this exercise. These questions 
include the following: (i) Which algorithms should be included (it would be desirable to reduce 
the number of algorithms, if possible)? (ii) Which thresholds should be included in the RTVS 
analyses? (iii)Which subsets of PIREPs should be used – are the benefits of using the HNC 
reports great enough to counter-balance the effects of the very reduced numbers of observations? 
(iv) Should the evaluation again be restricted to upper levels in the atmosphere? These questions 
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should be discussed by the Turbulence PDT as part of the planning process for the next 
intercomparison exercise. 

The 1999-2000 and other future turbulence intercomparison exercises would benefit from 
a number of improvements to the data and analysis methods. Among the improvements which 
will be undertaken before the next intercomparison exercise is the implementation of an 
enhanced PIREP decoder. Utilization of the more systematic eddy dissipation rate observations, 
when they are available, also will aid in reducing biases and uncertainty in future verification 
analyses. In addition, NWA PIREPs will add extra information that has not been available 
previously. These improvements will increase the reliability of the verification statistics.   
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Appendix A 
On the Computation of FAR using PIREP Data 

 It has been suggested in previous studies (Brown et al., 1997; Brown and Mahoney, 1998) 
that it is inappropriate to compute verification statistics such as the false alarm ratio (FAR) when 
using PIREP data for verification of icing and turbulence forecasts. In particular, it is 
inappropriate to compute statistics that are dependent on the forecast distribution, because the 
PIREPs generally do not adequately represent the forecast grid. These suggestions have been 
supported by simple simulation studies that show that FAR and other verification statistics are far 
from correct, and are basically meaningless when computed using PIREP data (e.g., Brown 
1996). 

 The underlying problem is that the value of FAR computed using PIREPs is much more 
dependent on the distribution of observations between Yes and No PIREPs than it is on the actual 
extent of the over-forecasting. This note provides a simple example, based on operational 
turbulence forecasts, to demonstrate the severity of this problem. In particular, Table A1 shows a 
2x2 verification contingency table for turbulence AIRMETs that were included in the winter 
1998-99 turbulence algorithm. 

Table A1: Sample contingency table for winter 1998-99 turbulence AIRMETs, with with 
both Yes and No observations based on PIREPs 

Observation  

Forecast Yes No 

 

Total 

Yes 3,123 2,084 5,207 

No 2,328 5,279 7,607 

Total 5,451 7,363 12,814 

  

Using this table we can compute 

PODy = 0.573 

and PODn = 0.717. 

 

Directly computing FAR and Bias, we obtain 
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FAR1 = 0.40 

and Bias1 = 0.96. 

Directly using the information in Table 1 also implies that the “climatological” probability of 
turbulence,  

pc1 = Pr{turbulence occurrence} = 0.40. 

This estimate of turbulence occurrence appears to be a large over-estimate of the probability of 
turbulence in the atmosphere. 

 The numbers in Table A1 are based on the use of PIREPs alone. In particular, negative 
PIREPs were used to obtain the negative information. What would the results look like if AVAR 
data were used instead of the negative PIREPs? Table A2 contains the counts associated with 
using positive PIREPs for the Yes observations and AVARs for the No observations. 

 

Table A2: As in Table A1, but with No observations based on AVAR data. 

Observation  

Forecast Yes No 

 

Total 

Yes 3,123 62,084 65,207 

No 2,328 135,636 137,964 

Total 5,451 197,720 203,171 

 

From Table A2, we can compute  

PODy = 0.573 

and  PODn = 0.686. 

Thus, these two statistics change very little as a result of the change in observations of No 
turbulence. However, if we compute FAR, pc, and Bias, we obtain the following very different 
results: 

FAR2 = 0.95 

pc2 = 0.03 

and Bias2 = 12.0. 
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In particular, FAR2 is much larger than FAR1; pc2 is much smaller than pc1 (simply because there 
are more AVAR than no-PIREP observations); and Bias2 implies a huge amount of 
overforecasting, whereas Bias1 suggests forecasts that are basically unbiased. 

 Which of these two very different sets of results is correct? The PODy and PODn values 
are nearly identical between the tables, yet the increase in the number of No observations has led 
to a huge change in the other statistics. Similar effects would be associated with changing the 
number of Yes observations, say, by directly collecting more PIREPs. What is the effect of all the 
PIREPs that don’t make it through the PIREP collection and distribution system, as well as the 
decoder? The correct answer to the first question above probably is neither, because neither set of 
counts is likely to represent the (unknown) true distribution of turbulence in the atmosphere. 

 This little example hopefully has demonstrated the fact that FAR and Bias should never 
be computed in this way using standard PIREP observations. This statement applies to the 
verification of both turbulence and icing forecasts. The problem, as stated earlier, is that these 
statistics are very sensitive to the distribution of Yes and No PIREP/AVAR observations. Using 
the Yes and No counts together to compute FAR implies that the value of pc computed from their 
combination also is representative of the probability of icing/turbulence5. This conclusion clearly 
is inappropriate. 

                                                 
5 In fact, it can be shown that FAR is a direct function of pc, PODy, and PODn. 
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Appendix B 
Comparison of Methods to Match PIREPs to Gridded Forecasts 

 As noted in Sections 6 and 7, some differences in the verification results, between the 
RTVS and post-analysis, were found to be associated with the different methods used to 
associate the PIREPs to the gridded forecasts. The extent of these differences is considered here. 
However, because the set of PIREPs available to the NCAR verification system is somewhat 
different from the PIREPs available to RTVS, it is not possible to make this comparison directly 
by comparing the results computed by the two systems (i.e., any differences noted would include 
both effects – the data and the matching methods – making it impossible to separate out the 
matching method effect alone).  Instead, the RTVS system was mimicked (as closely as possible) 
using the NCAR system, so that exactly the same verification data were used by both methods. 
Specifically, the interpolation approach used by RTVS was mimicked using a simple average of 
the algorithm output at the four grid points surrounding the PIREP; in contrast, as noted in 
Section 5, the NCAR method involves matching the PIREP to the maximum value at the four 
surrounding grid points. 

 Figure B1 shows the results of applying the two methods, for two different algorithms. 
Results for the AIRMETs also are shown, for comparative purposes. Specifically, Figure B1 
shows the curves relating PODy to 1-PODn and % Volume, for the two different methods, where 
the NCAR method is denoted as “Matched” and the pseudo-RTVS method is denoted as 
“Averaged.” The curves are based on 3-hr ITFA and ULTURB forecasts. 

 As shown in Fig. B1(a), the differences between methods are small for the curves relating 
PODy to 1-PODn. In fact, for both algorithms, the main change seems to be a re-calibration. That 
is, for the averaging method, smaller thresholds are required to attain the same value of PODy as 
with the matching method, yet the relationship between PODy and 1-PODn remains about the 
same with both methods. 

 In contrast, the relationship between PODy and % Volume appears to be quite dependent 
on the matching method used to associate the forecasts to the PIREPs, with the largest 
differences associated with ULTURB. In particular, with the matching method, ULTURB attains 
a much larger PODy for the same % Volume as with the averaging method. Similar but smaller 
differences are apparent for ITFA.  

Note that the “Averaged” curve for ULTURB in Fig. B1(b) has a similar shape to the 
RTVS curve for ULTURB shown in Fig. 5, and that this curve has a different character than the 
curves for the other algorithms. As noted in Section 7, the PODy vs. % Volume curve for 
ULTURB also is very different from the curves for the other algorithms when the NCAR 
matching method is used. These results suggest that the nature of ULTURB may different in 
some respects from the other algorithms. Figure B2 shows an example of ULTURB forecasts at 
35,000 ft, with a threshold of 0.100, for one forecast. As shown in this figure, the ULTURB 
output is very scattered, for the most part, with a lot of very small disjoint areas. Algorithm 
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output features of this type could easily lead to larger PODy values, associated with a relatively 
small % Volume, using a method that takes into account the largest forecast value among four 
gridpoints. In contrast, many of the sets of four grid points would lead to “No”  forecasts when 
using the interpolation or averaging method. 
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Figure B1.  Verification curves for 3-hr ITFA and ULTURB forecasts, using two different 
methods for matching PIREPs to algorithm output. See text for explanation of methods. 

 

 
Figure B2. Sample of algorithm output for ULTURB at 35,000 ft, with a threshold of 0.10. 
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Table 1 : Basic contingency table for evaluation of dichotomous (e.g., Yes/No) forecasts. 
Elements in the cells are the counts of forecast-observation pairs. 

Observation  

Forecast Yes No 

 

Total 

Yes YY YN YY+YN 

No NY NN NY+NN 

Total YY+NY YN+NN YY+YN+NY+NN 

 

 

 

Table 2: Verification statistics used in this study. 

Statistic Definition Description 

PODy YY/(YY+NY) Probability of Detection of “Yes” observations 

PODn NN/(YN+NN) Probability of Detection of “No” observations 

TSS PODy + PODn – 1 True Skill Statistic 

Curve Area Area under the curve relating 
PODy and 1-PODn 

Area under the curve relating PODy and 1-PODn 

% Area (Forecast Area) / (Total Area) 

x 100 

% of the area of the continental U.S. where turbulence is 
forecast to occur on at least one model level 

% Volume (Forecast Vol) / (Total Vol)  

x 100 

% of the total air space volume that is impacted by the 
forecast 

Volume 
efficiency 

(PODy x 100) / % Volume PODy (x 100) per unit % Volume 
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Table 3: Algorithm thresholds used in RTVS analyses. 

Algorithm  Threshold Values 

BT3.0 .007 .02 .07 .1 

Brown-1 .00002 .00005 .0001 .0002 

CCAT            10-10  10-9  10-8  5x10-8 

DTF3 0.1 0.5 0.9 1.3 

DTF4 0.2 1.0 3.5 5.0 

DTF5 0.05 0.10 0.20 0.30 

Dutton 2.0 7.0 15.0 30.0 

Ellrod-2  10-8  10-7  4x10-7  6x10-7 

ITFA 0.01 0.10 0.25 0.50 

ITFA-S 0.01 0.10 0.25 0.50 

Richardson 1.0 3.0 5.0 9.0 

SCATR  10-6  10-4  10-3  10-2 

Shear 0.001 0.002 0.004 0.01 

ULTURB 0.0001 0.001 0.02 0.10 
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Table 4: Algorithm thresholds used in post-analysis. 

Algorithm Thresholds 

Brown-1 0.035, 0.050, 0.060, 0.070, 0.075, 0.080, 0.090, 0.100, 0.120, 0.140, 0.150, 0.200, 0.300 

BT3.0 10-6, 10-5, 10-4, 0.005, 0.100 

CCAT 5x10-10, 10-9, 3x10-9, 4x10-9, 5x10-9, 7x10-9, 9x10-9, 10-8, 1.5x10-8, 2x10-8, 3.5x10-8, 5x10-8, 
10-7 

DTF3 0.10, 0.20, 0.30, 0.40, 0.45, 0.50, 0.70, 0.90, 1.30,  2.00, 3.00 

DTF4 0.2, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0, 7.0, 8.0 

DTF5 0.06, 0.08, 0.10, 0.12, 0.15, 0.17, 0.20, 0.25, 0.30, 0.50, 0.70, 0.90 

Dutton 7, 10, 12, 15, 18, 20, 22, 25, 30, 40, 45, 60, 80 

Ellrod-2 10-7, 2x10-7, 2.5x10-7, 3x10-7, 3.5x10-7, 4x10-7, 5x10-7, 6x10-7, 7x10-7, 9x10-7, 12x10-7, 
16x10-7 

ITFA 0.01, 0.03, 0.05, 0.07, 0.10, 0.15, 0.20, 0.25, 0.30, 0.40, 0.50 

Richardson 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 7.0, 9.0, 12.0, 15.0 

SCATR 10-7, 10-6, 10-4, 5x10-4, 0.001, 0.003, 0.005 

Shear 0.002, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.010, 0.015, 0.020 

ULTURB 0.001, 0.020, 0.030, 0.040, 0.050, 0.060, 0.080, 0.100, 0.150, 0.200, 0.300 
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Table 5: Verification statistics for all 3-hr forecasts (all issue times combined), for thresholds with PODy (MOG PIREPs) 
about the same as the PODy for AIRMETs. Verification based on All PIREPs. Overall area under the PODy vs. 1-PODn curve 

is also presented. 

 

Algorithm 

 

Threshold 

PODy 

(All) 

PODy 
(MOG) 

PODn 
(PIREPs) 

PODn 
(AVARs) 

TSS 
(PIREPs) 

TSS 
(AVARs) 

Curve 
Area 

Average 
% Volume

Volume 
Efficiency

AIRMETs -- 0.54 0.61 0.72 0.69 0.32 0.29 -- 21.7 2.8 

Brown-1 0.09 0.58 0.62 0.62 0.58 0.24 0.20 0.67 26.7 2.3 

CCAT 5x10-9 0.64 0.66 0.44 0.54 0.11 0.20 0.59 33.9 2.0 

DTF3 0.70 0.58 0.63 0.67 0.67 0.30 0.30 0.71 26.5 2.4 

DTF4 2.50 0.56 0.60 0.65 0.68 0.26 0.28 0.68 27.0 2.2 

DTF5 0.15 0.59 0.64 0.62 0.65 0.26 0.29 0.69 29.4 2.2 

Dutton 22.00 0.58 0.61 0.62 0.64 0.23 0.25 0.66 28.3 2.2 

Ellrod-2 4x10-7 0.60 0.65 0.68 0.65 0.33 0.31 0.72 22.9 2.8 

ITFA 0.07 0.56 0.62 0.70 0.69 0.31 0.31 0.71 22.2 2.8 

Richardson 4.00 0.56 0.61 0.68 0.64 0.29 0.26 0.71 26.1 2.3 

SCATR 0.0001 0.70 0.68 0.30 0.31 -0.02 -0.02 0.46 45.4 1.5 

Shear 0.006 0.61 0.65 0.58 0.61 0.23 0.26 0.67 31.0 2.1 

ULTURB 0.06 0.63 0.66 0.48 0.49 0.13 0.15 0.61 16.6 3.9 
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Table 6: As in Table 5, for 6-hr forecasts. 

 

Algorithm 

 

Threshold 

PODy 

(All) 

PODy 
(MOG) 

PODn 
(PIREPs) 

PODn 
(AVARs) 

TSS 
(PIREPs) 

TSS 
(AVARs) 

Curve 
Area 

Average 
% Volume

Volume 
Efficiency

AIRMETs -- 0.54 0.61 0.72 0.69 0.32 0.29 -- 21.7 2.8 

Brown-1 0.09 0.57 0.61 0.64 0.58 0.25 0.20  0.68 25.9 2.4 

CCAT 7x10-9  0.58 0.62 0.54 0.58 0.16 0.19  0.64 27.5 2.2 

DTF3 0.70 0.55 0.60 0.72 0.69 0.33 0.30  0.73 23.6 2.6 

DTF4 2.50 0.54 0.60 0.70 0.69 0.29 0.28  0.70 24.4 2.4 

DTF5 0.15 0.57 0.62 0.67 0.66 0.29 0.28  0.70 26.7 2.3 

Dutton 22.00 0.58 0.63 0.64 0.64 0.27 0.26  0.69 26.2 2.4 

Ellrod-2 4x10-7 0.57 0.63 0.70 0.66 0.33 0.29  0.73 20.8 3.0 

ITFA 0.07 0.53 0.60 0.72 0.70 0.32 0.30  0.72 19.6 3.0 

Richardson 4.00 0.54 0.59 0.71 0.67 0.30 0.26  0.72 23.6 2.5 

SCATR 0.0001 0.68 0.68 0.35 0.31 0.03 -0.01  0.50 44.6 1.5 

Shear  0.006 0.60 0.65 0.61 0.61 0.26 0.26  0.68 28.6 2.3 

ULTURB 0.07 0.56 0.60 0.57 0.55 0.17 0.15  0.62 13.7 4.4 
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Table 7: As in Table 5, for 9-hr forecasts. 

 

Algorithm 

 

Threshold 

PODy 

(All) 

PODy 
(MOG) 

PODn 
(PIREPs) 

PODn 
(AVARs) 

TSS 
(PIREPs) 

TSS 
(AVARs) 

Curve 
Area 

Average 
% Volume

Volume 
Efficiency

AIRMETs -- 0.54 0.61 0.72 0.69 0.32 0.29 -- 21.7 2.8 

Brown-1 0.09 0.55 0.59 0.63 0.59 0.22 0.18 0.65  25.0 2.4 

CCAT 7x10-9 0.57 0.60 0.54 0.60 0.14 0.20  0.62 26.0 2.3 

DTF3 0.60 0.57 0.62 0.68 0.67 0.31 0.30  0.71 25.9 2.4 

DTF4  2.00 0.58 0.63 0.62 0.64 0.26 0.27  0.68 29.3 2.1 

DTF5  0.12 0.63 0.67 0.57 0.60 0.25 0.27  0.68 33.3 2.0 

Dutton 20.00 0.58 0.62 0.60 0.61 0.22 0.23  0.66 28.9 2.1 

Ellrod-2 3.5x10-7  0.58 0.62 0.64 0.64 0.27 0.26  0.69 23.1 2.7 

ITFA  0.05 0.59 0.64 0.61 0.63 0.26 0.27  0.69 25.1 2.6 

Richardson  5.00 0.57 0.63 0.66 0.62 0.29 0.25  0.69 28.1 2.2 

SCATR 0.0001 0.68 0.66 0.36 0.30 0.03 -0.04  0.48 44.5 1.5 

Shear  0.006 0.56 0.61 0.63 0.64 0.24 0.25  0.66 26.7 2.3 

ULTURB 0.07 0.59 0.62 0.59 0.55 0.20 0.17  0.64 13.4 4.6 
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Table 8: Variations in verification statistics with lead time (all issue times combined), for 
some algorithms and thresholds. Statistics based on All PIREPs. 

 

Algorithm 

 

Thresh 

Lead 
(hr) 

PODy 
(MOG) 

PODn 
(PIREPs) 

 

TSS 

Curve 
area 

Ave. % 
Area 

Ave. % 
Volume 

Volume 
Eff. 

3 0.63 0.67 0.30 0.71 84.7 26.5 2.4 

6 0.60 0.72 0.33 0.73 80.0 23.6 2.6 

 

DTF3 

 

0.70 

9 0.56 0.73 0.29 0.71 75.6 21.5 2.6 

 

3 0.65 0.68 0.33 0.72 76.4 22.9 2.8 

6 0.63 0.70 0.33 0.73 72.1 20.8 3.0 

 

Ellrod-2 

 

4x10-7 

9 0.56 0.70 0.26 0.69 68.0 19.0 3.0 

 

3 0.62 0.70 0.31 0.71 77.8 22.2 2.8 

6 0.60 0.72 0.32 0.72 72.0 19.6 3.1 

 

ITFA 

 

0.07 

9 0.54 0.73 0.27 0.69 66.5 18.0 3.0 
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Table 9: Verification statistics for all 3-hr forecasts (all issue times combined), for thresholds with PODy (MOG PIREPs) 
about the same as the PODy for AIRMETs (for All PIREPs). Verification based on Heavy, Non-convective (HNC) PIREPs. 

Overall area under the PODy vs. 1-PODn curve also is presented. 

 

Algorithm 

 

Threshold 

PODy 

(All) 

PODy 
(MOG) 

PODn 
(PIREPs) 

PODn 
(AVARs) 

TSS 
(PIREPs) 

TSS 
(AVARs) 

Curve 
Area 

Average 
% Volume

Volume 
Efficiency

AIRMETs -- 0.54 0.61 0.72 0.69 0.32 0.29 -- 21.7 2.8 

Brown-1 0.10 0.63 0.64 0.62 0.58 0.29 0.23  0.69 20.0 2.9 

CCAT 9x10-9 0.58 0.59 0.58 0.65 0.17 0.25 0.62 23.5 2.5 

DTF3 0.80 0.58 0.61 0.72 0.71 0.33 0.32 0.72 22.7 2.7 

DTF4 2.75 0.57 0.61 0.69 0.71 0.29 0.32 0.70 24.0 2.5 

DTF5 0.17 0.58 0.62 0.68 0.70 0.29 0.32 0.70 25.2 2.5 

Dutton 25.00 0.57 0.60 0.68 0.70 0.28 0.30 0.69 23.0 2.6 

Ellrod-2 4.5x10-7 0.60 0.63 0.72 0.70 0.35 0.32 0.73 19.4 3.2 

ITFA 0.08 0.59 0.62 0.73 0.72 0.36 0.35 0.73 19.4 3.2 

Richardson 4.00 0.57 0.60 0.68 0.64 0.28 0.24 0.70 26.1 2.3 

SCATR 0.0005 0.55 0.54 0.42 0.42 -0.04 -0.04 0.47 33.0 1.6 

Shear 0.0065 0.60 0.63 0.63 0.65 0.26 0.28 0.68 27.1 2.3 

ULTURB 0.07 0.59 0.59 0.56 0.57 0.16 0.16 0.62 13.5 4.4 
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Table 10: As in Table 9, for 6-hr forecasts. 

 

Algorithm 

 

Threshold 

PODy 

(All) 

PODy 
(MOG) 

PODn 
(PIREPs) 

PODn 
(AVARs) 

TSS 
(PIREPs) 

TSS 
(AVARs) 

Curve 
Area 

Average 

% Volume

Volume 
Efficiency

AIRMETs -- 0.54 0.61 0.72 0.69 0.32 0.29 -- 21.7 2.8 

Brown-1 0.09 0.60 0.62 0.64 0.58 0.26 0.21 0.69 25.9 2.4 

CCAT 7x10-9 0.61 0.63 0.54 0.58 0.18 0.21 0.65 27.5 2.3 

DTF3 0.70 0.62 0.63 0.72 0.69 0.35 0.32 0.74 23.6 2.7 

DTF4 2.50 0.60 0.62 0.70 0.69 0.31 0.30 0.71 24.4 2.5 

DTF5 0.17 0.57 0.60 0.72 0.71 0.31 0.30 0.71 22.5 2.6 

Dutton 25.00 0.56 0.60 0.72 0.70 0.31 0.30 0.71 20.8 2.9 

Ellrod-2 4.5x10-7 0.58 0.61 0.76 0.71 0.37 0.32 0.75 17.4 3.5 

ITFA 0.07 0.58 0.62 0.72 0.70 0.34 0.32 0.74 19.6 3.1 

Richardson 4.00 0.58 0.60 0.71 0.67 0.31 0.28 0.73 23.6 2.6 

SCATR 0.0005 0.51 0.51 0.43 0.42 -0.06 -0.08 0.49 32.6 1.6 

Shear 0.0065 0.60 0.63 0.67 0.66 0.30 0.29 0.70 24.7 2.6 

ULTURB 0.07 0.58 0.61 0.57 0.55 0.18 0.16 0.63 13.7 4.5 
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Table 11: As in Table 9, for 9-hr forecasts. 

 

Algorithm 

 

Threshold 

PODy 

(All) 

PODy 
(MOG) 

PODn 
(PIREPs) 

PODn 
(AVARs) 

TSS 
(PIREPs) 

TSS 
(AVARs) 

Curve 
Area 

Average 

% Volume

Volume 
Efficiency

AIRMETs -- 0.54 0.61 0.72 0.69 0.32 0.29 -- 21.7 2.8 

Brown-1 0.09 0.58 0.61 0.63 0.59 0.24 0.20 0.67 25.0 2.4 

CCAT 7x10-9 0.60 0.63 0.54 0.60 0.16 0.22 0.64 26.0 2.4 

DTF3 0.60 0.59 0.62 0.68 0.67 0.30 0.29 0.71 25.9 2.4 

DTF4 2.00 0.60 0.63 0.62 0.64 0.25 0.26 0.68 29.3 2.1 

DTF5 0.14 0.57 0.60 0.65 0.66 0.25 0.26 0.68 26.9 2.2 

Dutton 20.00 0.60 0.64 0.60 0.61 0.23 0.25 0.67 28.9 2.2 

Ellrod-2 4x10-7 0.57 0.59 0.70 0.69 0.29 0.29 0.71 19.0 3.1 

ITFA 0.06 0.57 0.61 0.67 0.68 0.28 0.29 0.72 21.2 2.9 

Richardson 5.00 0.60 0.63 0.66 0.62 0.28 0.25 0.69 28.0 2.2 

SCATR 0.0001 0.64 0.64 0.36 0.30 0.00 -0.06 0.51 44.5 1.4 

Shear 0.006 0.57 0.62 0.63 0.64 0.24 0.26 0.67 26.7 2.3 

ULTURB 0.07 0.61 0.63 0.59 0.55 0.21 0.18 0.64 13.4 4.7 
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Figure 1:  Web-based menu display for algorithm threshold comparison plots. User chooses 
a statistic, issue/lead time, and observation type.  User submits request and a GIF image of 
the plot will appear on the screen.  AVAR observations are listed seperately on this menu. 
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Figure 2: Time series plots and height series plots for 21 December 1998 - 31 March 1999 
for 15 UTC issuance 3-hr lead for the NC-PIREP cases.  Each day on the time series chart 
is represented by a dot.  Each algorithm threshold is represented by a line (connecting the 
dots).  The solid line on the left height series chart indicates PODy and on the right chart 
PODn.  Heights are every 5,000 ft and data is combined for entire period.  The number of 
Yes PIREPs are listed on the right side of the PODy height series chart and the No PIREPs 
listed on the right side of the height series PODn chart. 
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Figure 3: Four panels are displayed: upper left is PODy vs. % Volume, upper right is 
PODn vs. % Volume, lower left is PODy vs. 1-PODn, and lower right is TSS vs. % Volume.  
Each dot represents a day and each color represents an algorithm threshold for 21 
December 1998 - 31 March 1999, 1500 UTC issuance and 3-hr lead for the Non-Convective 
PIREP cases. 



 47

(a) (b) 

(c)  (d) 

Figure 4: Four panels for 21 December 1998 - 31 March for the 1500 UTC issuance, 6-hr 
lead, for the MOG HNC PIREP cases are displayed for (a)  and (b) PODy vs % Volume, 
with each plot containing 7 of the 14 algorithms; and (c) and (d) PODn vs % Volume for 
the two groups of algorithms.  AIRMETs are represented by the *.  Each shape (e.g. dot, 
triangle, etc) represents the PODy and % Volume for a particular algorithm threshold.  
The line segments connect the thresholds for a particular algorithm. 
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(a)  (b) 

 

 

(c)  (d) 

 

Figure 5:  Same as Fig. 4, except for the 1500 UTC issuance and 3-hr lead. 
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(a)  (b) 

 

(c)  (d) 

Figure 6: Same as Fig. 4, except for the 1500 UTC, 9-hr lead. 
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(a)  (b) 

 

(c)  (d) 

Figure 7: Same as Fig. 4, except for the 1200 UTC issuance, 6-hr lead. 
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(a)  (b) 

 

(c)  (d) 

Figure 8:  Same as Fig. 4, except for the 1800 UTC issuance, 6-hr lead. 
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Figure 9: Height series chart for the 1500 UTC issuance, 6-hr lead time forecasts, for 21 
December 1998 - 31 March 1999.  Each symbol/line combination represents one algorithm 
threshold for PODy based on HNC PIREPs.  Height is in 5,000 ft intervals. 
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Figure 10:  Same as Fig. 9, except for PODn. 
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Figure 11:  Height series chart for the Ellrod index for 21 December 1998 - 31 March 1999 
for 1500 UTC issuance, 6-hr lead, for HNC PIREP cases.  Each algorithm threshold is 
represented by one of the four line types.  Height is in 5,000 ft intervals with number 
PIREPs listed along the right side of each figure.  The left figure is PODy and the right 
figure is PODn. 
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Figure 12: Algorithm performance curves for 3-hr forecasts, using All PIREPs, showing 
PODy (MOG PIREPs) vs. % Area for (a) algorithm group A and (b) algorithm group B; % 
Volume for (c) algorithm group A and (d) algorithm group B; and 1-PODn for (e) 
algorithm group A and (f) algorithm group B. PODn is based on PIREPs. 
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Figure 13: Algorithm performance curves for 6-hr forecasts, using All PIREPs, showing 
PODy (MOG PIREPs) vs. % Volume for (a) algorithm group A and (b) algorithm group B; 
and 1-PODn for (c) algorithm group A and (d) algorithm group B. PODn is based on 
PIREPs. 



 57

Percent Volume

PO
D

y 
(M

O
G

)

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AIRMETs
BROWN-1
ULTURB
DTF3
DTF4
DTF5
ITFA
ELLROD-2

Percent Volume

PO
D

y 
(M

O
G

)

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AIRMETs
CCAT
DUTTON
RICHARDSON
SCATR
BT3
SHEAR

1 - PODn

PO
D

y 
(M

O
G

)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AIRMETs
BROWN-1
ULTURB
DTF3
DTF4
DTF5
ITFA
ELLROD-2

1 - PODn

PO
D

 (M
O

G
)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AIRMETs
CCAT
DUTTON
RICHARDSON
SCATR
BT3
SHEAR

 
Figure 14: As in Figure 13, for 9-hr forecasts, based on All PIREPs. 
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Figure 15: Comparison of results for different lead times for 3 algorithms. Statistics based 
on All PIREPs. 
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Figure 16: Results for different lead times, for forecasts valid at 2100 UTC, with statistics 
based on All PIREPs. 
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Figure 17: Comparison of results for different issue times, for forecasts with a 6-hr lead 
time. Statistics based on All PIREPs. 
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Figure 18: As in Figure 13, for 3-hr forecasts, with statistics based on HNC PIREPs. 



 62

Percent Volume

PO
D

 (M
O

G
)

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AIRMETs
BROWN-1
ULTURB
DTF3
DTF4
DTF5
ITFA
ELLROD-2

Percent Volume

PO
D

 (M
O

G
)

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AIRMETs
CCAT
DUTTON
RICHARDSON
SCATR
BT3
SHEAR

1 - POD No

PO
D

 (M
O

G
)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AIRMETs
BROWN-1
ULTURB
DTF3
DTF4
DTF5
ITFA
ELLROD-2

1 - POD No

PO
D

 (M
O

G
)

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AIRMETs
CCAT
DUTTON
RICHARDSON
SCATR
BT3
SHEAR

 
Figure 19: As in Figure 13, for 6-hr forecasts, with statistics based on HNC PIREPs. 
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Figure 20: As in Figure 13, for 9-hr forecasts, with statistics based on HNC PIREPs. 
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Figure 21: Comparison of results for different groupings of PIREPs, for 3 algorithms, 3-hr 
forecasts. 
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Figure 22: Comparison of results for different groupings of PIREPs, for 3 algorithms, 6-hr 
forecasts. 
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